803 research outputs found

    Responses of riparian guilds to flowalterations in a Mediterranean stream

    Full text link
    Questions: Do Mediterranean riparian guilds show distinct responses to stream water declines? If observed,which are the most sensitive and resilient guilds and theirmost affected attributes? Location: Tie¿tar river below the Rosarito dam, central-western Spain. Methods: We identified riparian guilds based on key woody species features and species distribution within this Mediterranean river corridor, and evaluated similarity of their responses to long-term flow alteration (i.e. stream water declines since dam construction in 1959). Hierarchical cluster analysis was used to group surveyed vegetation bands according to species composition. The groups were designated as riparian guilds where each vegetation group comprising a guild: (1) contains species sharing similar features (using PCA); and (2) shares a similar environment (using DCA). Changes in several guild attributes (i.e. dominance and species composition, diversity and establishment patterns) during the regulated period were compared statistically. We used pre- and post-dam established vegetation bands identified based on old (1956) and modern (2006) aerial photographs and field measurements of woody species diameter. Results: Responses to flow alterations varied between guilds according to ecological requirements of their species. The ability to survive water stress (i.e. ?Xeric? guilds) and drag forces caused by floods (?Torrential? guilds) allowed certain pioneer shrub-dominated guilds (e.g. Flueggea tinctoria and Salix salviifolia) to spread on newly emerged surfaces downward to the main channel after flow alterations, although new shrubland had less species diversity than pre-dam shrubland. In contrast, new hydromorphological conditions following damming limited recruitment of native late-successional tree guilds sensitive to floods (to drag forces, inundation and anoxia; i.e. ?Slow-water? and ?Flood-sensitive?, respectively) and those with greater water requirements (i.e. ?Hydric?) (e.g. Alnus glutinosa and Celtis australis), although species diversity increased in this mature forest through co-existence of remaining riparian species and new arrival of upland species. Conclusions: Changes in several riparian attributes after flow alterations differed between guilds. Stream water declines after damming caused shifts in species-poor pioneer shrubland downwards to the watered channel, resulting in severe declines ofmaturenative forest.Understanding vegetation guild responses provides information about general trends in plant populations and assemblage structures expected to occur during river development and flow regulation, increasing our capacity to detect and synthesize complex flowalteration?riparian ecosystem response relationships, and anticipate irreversible impacts

    Chapter 2 Towards an Optimal Design for Ecosystem-Level Ocean Observatories

    Get PDF
    Four operational factors, together with high development cost, currently limit the use of ocean observatories in ecological and fisheries applications: 1) limited spatial coverage; 2) limited integration of multiple types of technologies; 3) limitations in the experimental design for in situ studies; and 4) potential unpredicted bias in monitoring outcomes due to the infrastructure’s presence and functioning footprint. To address these limitations, we propose a novel concept of a standardized “ecosystem observatory module” structure composed of a central node and three tethered satellite pods together with permanent mobile platforms. The module would be designed with a rigid spatial configuration to optimize overlap among multiple observation technologies each providing 360° coverage of a cylindrical or hemi-spherical volume around the module, including permanent stereo-video cameras, acoustic imaging sonar cameras, horizontal multi-beam echosounders and a passive acoustic array. The incorporation of multiple integrated observation technologies would enable unprecedented quantification of macrofaunal composition, abundance and density surrounding the module, as well as the ability to track the movements of individual fishes and macroinvertebrates. Such a standardized modular design would allow for the hierarchical spatial connection of observatory modules into local module clusters and larger geographic module networks, providing synoptic data within and across linked ecosystems suitable for fisheries and ecosystem level monitoring on multiple scales

    Automatic segmentation of rivers as a tool for assessing river responses. Case study: the Porma and Curueño rivers, nw Spain.

    Get PDF
    Automatic segmentation using univariate and multivariate techniques provides more objective and efficient segmentations of the river systems (Alber & Piégay, 2011) and can be complementary to the expert criteria traditionally used (Brenden et al., 2008) INTEREST: A powerful tool to objectively segment the continuity of rivers, which is required for diagnosing problems associated to human impacts OBJECTIVE: To evaluate the potentiality of univariate and multivariate methods in the assessment of river adjustments produced by flow regulatio

    Smart Sensor interface for sea bottom observatories

    Get PDF
    In order to be able to use all the marine sensors currently available in the market, a new module has to be built to implement the smart sensor standard IEEE1451[ 1] as well as other services used in marine measurements. The smart module is aimed to be used in ALL observatory configurations: autonomous, cabled and buoybased observatories. This module can also be used in new instrument in other instruments such as Ocean Bottom Seismometers (OBS) [3] or any other instrument where data logging, clock synchronization, and plug and play capabilities are important. Therefore, the power consumption of the smart module has to be minimized for batteries based observatories and autonomous instruments.Peer ReviewedPostprint (published version

    Diversidad morfológica mandibular de los monos capuchinos: un análisis morfométrico

    Get PDF
    La diversificación de los platirrinos a escala macroevolutiva ha sido sistemáticamente estudiada en años recientes. Sin embargo, el origen de la diversidad fenotípica y de taxones observada a escalas filogenéticas menores, p. ej., dentro de los géneros, ha sido menos estudiada. En este contexto, la diversidad de los monos capuchinos ha sido discutida recientemente. Los trabajos previos reconocían un único género y principalmente cuatro especies. En cambio, algunos estudios recientes, empleando datos morfológicos y moleculares, han propuesto dividir el clado en dos géneros (Cebus y Sapajus) y doce especies. El objetivo de este trabajo es explorar la variación morfométrica mandibular de las especies de monos capuchinos para discutir este problema. Los resultados obtenidos -empleando microtomografías computadas, técnicas de la morfometría geométrica en 3D y métodos comparativos filogenéticos- muestran que todas las especies estudiadas se encuentran superpuestas a lo largo del eje principal de variación en forma, y que la diferenciación de las especies que recientemente han sido asignadas a los géneros Cebus y Sapajus se relaciona con cambios no alométricos en forma. Muchas de las características asignadas al recientemente propuesto género Sapajus, incluyendo particularmente la robustez de la mandíbula, son observadas en individuos masculinos de especies de ambos géneros. Estos resultados sugieren que las características morfológicas descritas recientemente para diferenciar los géneros de capuchinos deben ser empleadas con cuidado como criterios para generar nuevas propuestas sistemáticas

    Transcriptomic Analysis of a Diabetic Skin-Humanized Mouse Model Dissects Molecular Pathways Underlying the Delayed Wound Healing Response

    Get PDF
    Defective healing leading to cutaneous ulcer formation is one of the most feared complications of diabetes due to its consequences on patients’ quality of life and on the healthcare system. A more in-depth analysis of the underlying molecular pathophysiology is required to develop effective healing-promoting therapies for those patients. Major architectural and functional differences with human epidermis limit extrapolation of results coming from rodents and other small mammal-healing models. Therefore, the search for reliable humanized models has become mandatory. Previously, we developed a diabetes-induced delayed humanized wound healing model that faithfully recapitulated the major histological features of such skin repair-deficient condition. Herein, we present the results of a transcriptomic and functional enrichment analysis followed by a mechanistic analysis performed in such humanized wound healing model. The deregulation of genes implicated in functions such as angiogenesis, apoptosis, and inflammatory signaling processes were evidenced, confirming published data in diabetic patients that in fact might also underlie some of the histological features previously reported in the delayed skin-humanized healing model. Altogether, these molecular findings support the utility of such preclinical model as a valuable tool to gain insight into the molecular basis of the delayed diabetic healing with potential impact in the translational medicine field

    Assessing the Potential of Intra-specific Biodiversity towards Adaptation of Irrigated and Rain-fed Italian Production Systems to Future Climate

    Get PDF
    AbstractThe study addresses the biophysical dimension of adaptation. It illustrates and applies a framework to evaluate options for adaptation by identifying cultivars optimally adapted to expected climate conditions, building on existing crops intra-specific biodiversity. The aim is to reduce the vulnerability of current production systems without altering the pattern of current species and cultivation systems.Adaptability is assessed through a three-step approach that involves: 1) evaluation of indicators of expected thermal and hydrological conditions within the specific landscape and production system; 2) determination, for a set of cultivars, of cultivar- specific thermal and hydrological requirements to attain the desirable yield; 3) identification, as options for adaptation, of the cultivars for which expected climate conditions match the climatic requirements. The approach relies on a process-based simulation model of water flow in the soil-plant-atmosphere system for the calculation of hydrological indicators. Thermal indicators are derived by means of phenological models. Empirical functions of cultivars yield response to water availability are used to determine cultivar-specific hydrological requirements, whereas cultivars thermal requirements are estimated through phenological observations.In a future climate case (2021-2050) three case-studies are analyzed: 1) a system dominated by rain-fed crops (olive, winegrapes, durum wheat) in a hilly area of southern Italy; 2) irrigated fruit crops (peach, pear) in the Po Valley; 3) maize and tomato crop in an irrigated plain of southern Italy.Cultivars adapted to the future climate have been identified for rain-fed crops (e.g. 5 olive cvs). For irrigated crops we have evaluated adaptability for optimal and deficit irrigation schedules, accounting for site-specific soils hydrological properties. Options for adaptations have been identified as a combination of cultivars, soils and irrigation schedules (e.g 2 tomato cvs and 3 maize hybrids have been identified as options for adaptation at scarce water availability). Moreover, in the case of fruit crops, accounting for phenological changes highlighted the impact on irrigation water requirements of the interaction between phenology and the intra-annual distribution of precipitation

    Prevalence of Chromosomally Integrated Human Herpesvirus 6 in Patients with Human Herpesvirus 6–Central Nervous System Dysfunction

    Get PDF
    AbstractWe identified 37 hematopoietic cell transplantation recipients with human herpesvirus 6 (HHV-6) central nervous system dysfunction and tested donor-recipient pairs for chromosomally integrated HHV-6 (ciHHV-6). One patient had ciHHV-6A with possible HHV-6A reactivation and encephalitis. There was no ciHHV-6 enrichment in this group, but larger studies are needed to determine if patients with ciHHV-6 are at increased risk for HHV-6–associated diseases or other complications

    Ocean Bottom Seismometer: Design and Test of a Measurement System for Marine Seismology

    Get PDF
    The Ocean Bottom Seismometer (OBS) is a key instrument for the geophysical study of sea sub-bottom layers. At present, more reliable autonomous instruments capable of recording underwater for long periods of time and therefore handling large data storage are needed. This paper presents a new Ocean Bottom Seismometer designed to be used in long duration seismic surveys. Power consumption and noise level of the acquisition system are the key points to optimize the autonomy and the data quality. To achieve our goals, a new low power data logger with high resolution and Signal–to-Noise Ratio (SNR) based on Compact Flash memory card is designed to enable continuous data acquisition. The equipment represents the achievement of joint work from different scientific and technological disciplines as electronics, mechanics, acoustics, communications, information technology, marine geophysics, etc. This easy to handle and sophisticated equipment allows the recording of useful controlled source and passive seismic data, as well as other time varying data, with multiple applications in marine environment research. We have been working on a series of prototypes for ten years to improve many of the aspects that make the equipment easy to handle and useful to work in deep-water areas. Ocean Bottom Seismometers (OBS) have received growing attention from the geoscience community during the last forty years. OBS sensors recording motion of the ocean floor hold key information in order to study offshore seismicity and to explore the Earth’s crust. In a seismic survey, a series of OBSs are placed on the seabed of the area under study, where they record either natural seismic activity or acoustic signals generated by compressed air-guns on the ocean surface. The resulting data sets are subsequently used to model both the earthquake locations and the crustal structure
    corecore